
Security risks from climate change and environmental degradation: implications for sustainable transformation in the Global South

Prof. Dr. Ulrike Grote
Institute for Environmental Economics and World Trade
Leibniz University Hannover

Crises, their interlinkages and effects

Security risks: Food and health insecurity

- Extreme weather events (i.e. heat waves, floods)
 - ⇒ reduce productivity and availability of staple crops (Grote et al. 2021)
 - ⇒ disrupt food supply chains, reduce income and affect food prices => reduced access to food (Richards et al. 2021; Köberle 2022)
 - ⇒ lead to mental health problems, climate distress, climate anxiety (Wu et al. 2020)
 - ⇒ deaths and illnesses, especially of most vulnerable and disadvantaged (Vicedo-Cabrera et al. 2021)
- Climate change
 - ⇒ affects nutrient composition of food => reduced utilization (Köberle 2022)
 - ⇒ risk of food insecurity (Hasegawa et al. 2021) => triggers health problems (i.e. under-/overweight; cardiovascular diseases) (Militao et al. 2022)
 - ⇒ spread of infectious diseases (Hess et al. 2020)
- Environmental degradation (air pollution, water scarcity, exploitation of forests)
 - ⇒ triggers health problems and novel diseases (WHO 2021)

Security risks: Conflicts and crime

- Climate change
 - => resource scarcity => risk of conflicts and crime (Koubi 2019; Agnew 2012; Vesco et al. 2020; Hagan & Rymond-Richmond 2008)
- Higher temperatures
 - => discomfort, irritability, agressiveness, violence (Koubi 2019)
 - => facilitate outdoor activities => exposing more people to offenders and leaving homes unprotected (Koubi 2019; Agnew 2012)
- Weather shocks (i.e. floods, hurricanes)
 - => more crime (Agnew 2012; Grote et al. 2025, 2024) => increased food insecurity (Ochieng & Grote 2025)

Security risks: Migration and forced displacement

- Climate change
 - => migration and forced displacement (Hoffmann et al. 2021)
 - => likely to affect about 143 million people in the Global South by 2050 (Almulhim et al. 2024)
- At home destinations => labor shortages, reduction in quantity and diversity of food crops
 (Blackmore et al. 2021)
- Displaced migrants => crimes and conflicts in destination areas (Asaka 2021)

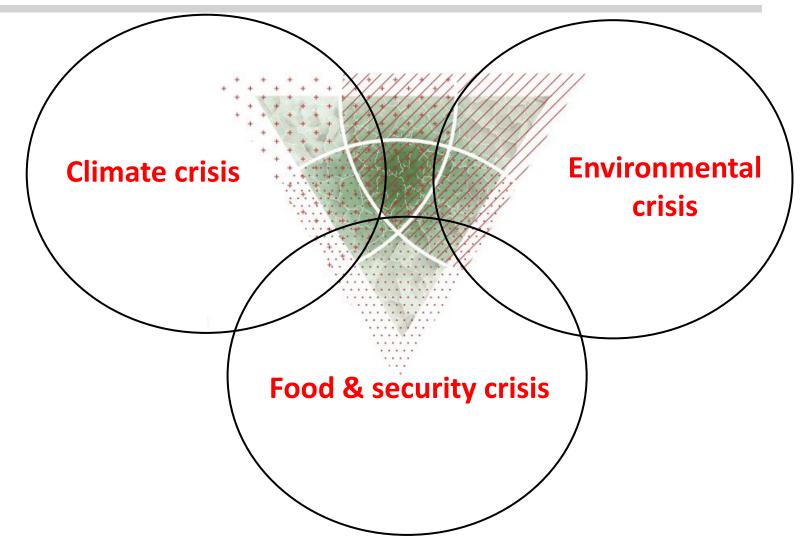
=> Food & security crisis

Crises and land use

Trilemma of land use

Climate crisis

=> land needed as carbon sink, to mitigate climate change


Environmental crisis

=> more land needed to protect biodiversity

Food & security crisis

Integrated land use

To overcome land use competition, we need an integrated way to manage land.

Towards more resilient land use

Expanding protected areas

Restoring degraded ecosystems

Diversifying agriculture

Source: Nguyen et al. 2023; WBGU

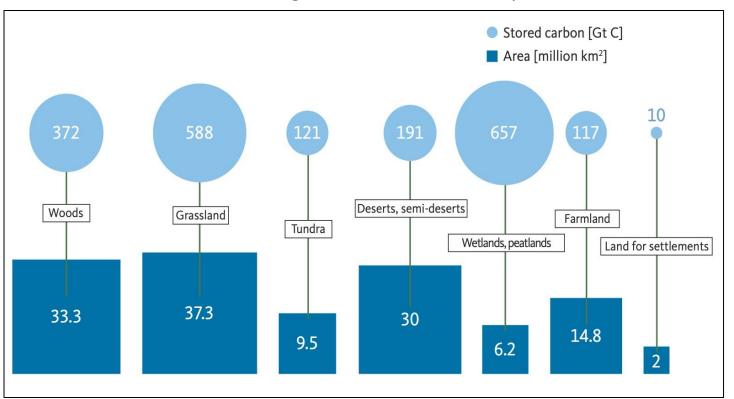
Effective & well-connected systems of protected areas are needed

- → Benefits climate change mitigation
- → Counters the global biodiversity crisis
- → Maintains basic ecosystem services
- → Multiple benefits for food security

(e.g. by allowing sustainable forms of use in certain zones)

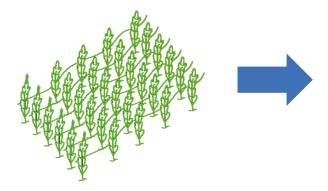
Recommended to expand terrestrial systems of protected areas to

30% of the Earth's land area

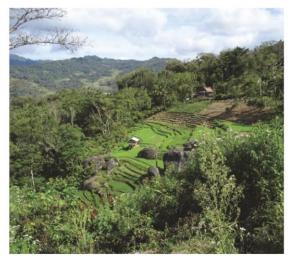

Restoring degraded terrestrial ecosystems

- Reforestation of deforested areas
- Rewetting of peatlands
- \Rightarrow CO₂ storage
- ⇒ biodiversity protection
- \Rightarrow nutrition

Peatlands are most important


Carbon storage in terrestrial ecosystems

=> Transformation needed!



- largely monofunctional
- production orientated

- ecologically intensive
- multifunctional systems

Source: Nguyen et al. 2023; WBGU 2020

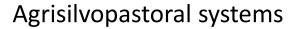
- Increasingly negative impacts of climate change on agricultural systems
 - => Droughts or extreme weather events
 - => Decreasing incomes in agriculture under current land use system
- Move away from maximization of revenues, biomass yield
- Reducing heavy **dependence** of conventional agriculture on energy-intensive, external inputs such as nitrogen fertilizers and pesticides => Environmental problems: heavy nitrate pollution of soil and water, emission of greenhouse gases

Example: Agroforestry systems

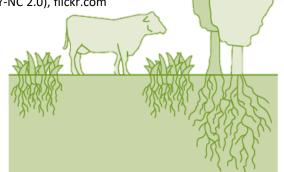
Agrisilvicultural systems

- trees
- crops

Christian Dupraz (INRA)

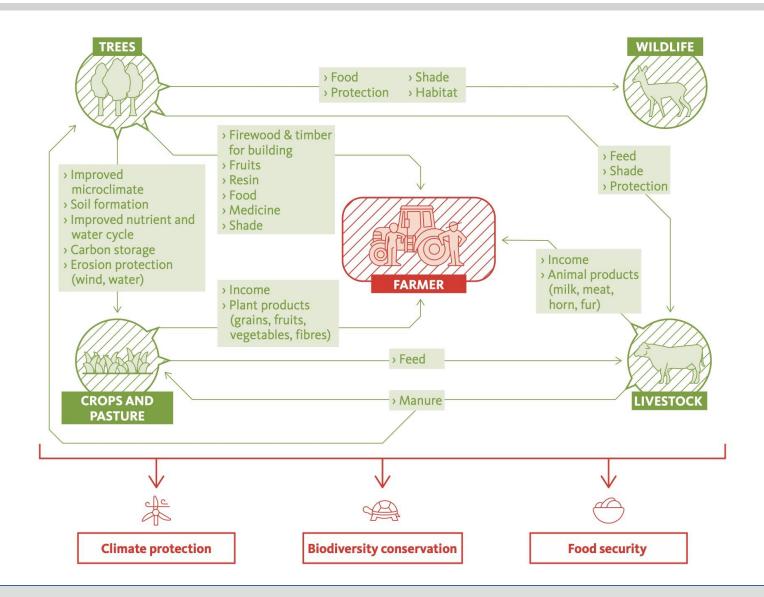


Silvopastoral systems


- trees
- livestock

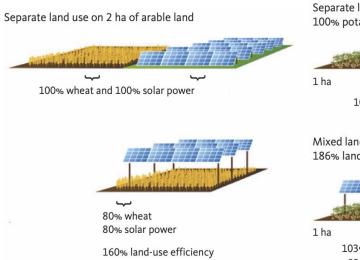
Contributions to diversification

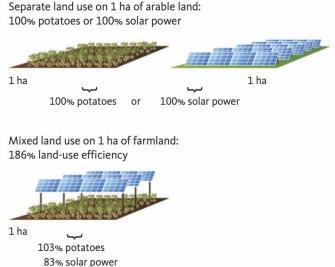
- Reducing input dependence of agricultural systems
- Pos. effects on soil, water, air, biodiversity
- Carbon fixation in soils
- Higher land use rate in the long run
- Increasing resilience of agricultural systems
- More income opportunities in agriculture


- trees
- crop
- livestock

Source: WBGU

Synergies of agroforestry systems




Example: Agri-photovoltaic systems (Agri-PV)

Fotos: Bauerle/Universität Hohenheim; Franhofer ISE

Contributions to diversification

- Reduction of input dependency
- Production of own electricity (CO₂-neutral)
- Increasing land use rate
- Possible synergies with agricultural production (e.g. shading, ↓ water requirements; hail protection)
- Additional income opportunities (electricity sales; energy for further processing

Example: Synergies through small-scale digitized systems

Contributions to diversification

- Reduction of input dependence (fertilizers, pesticides, labor)
- Positive effects on soil, water, air, biodiversity
- Carbon fixation in soils
- Higher land use rate in the long run
- Increasing resilience of agricultural systems

1 | Leibniz 10 2 Universität 100 4 Hannover

Governance strategies for a solidarity-based land stewardship

Change agents

Proactive state

Regional and international cooperation

Source: WBGU

Pioneers of change

Sebastião Salgado: Bulcão Farm

Before and After: 20 years of renaturation through afforestation

Proactive state

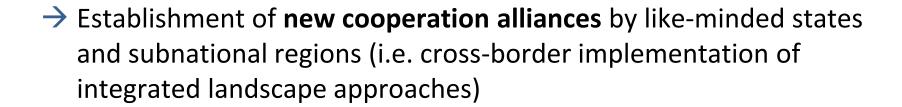
Developing a consistent system of different instruments to support a land-use transformation. We need...

- a system of coordinated instruments (e.g. price incentives, spatial planning)
- to ensure that environmental costs are internalized
- voluntary and mandatory sustainability standards & monitoring
- promoting circular and cascading uses
- to enforce domestic requirements on land stewardship

Regional and international cooperation

→ Regional organizations (i.e. ASEAN) are particularly well suited for testing a land-use transformation over a large area

- → Regional organizations bear international responsibility because of high demand for land outside them → trade policy
 - → essential that they use their foreign-trade policy to promote a global land use transformation
 - → Call for sustainability and resilience in trade


•

Regional and international cooperation

Numerous international organizations, institutions & conventions are working on the global land use transformation

- → convening a 'Global Land Summit'
 - → Generate attention for the global land use transformation
 - → Generate resources to develop a common vision for sustainable land stewardship

Thank you

